Mechanism of Polymerization

Polymerization is the process of reacting monomer molecules together in a chemical reaction to form polymer chains. The mechanism of polymerization is generally divided into two broad categories: step-growth (condensation) polymerization and chain-growth (addition) polymerization. Each mechanism has distinct reaction steps, intermediates, and resulting polymer structures.

Step-Growth Polymerization:

In step-growth polymerization, bi-functional or multi-functional monomers react to form first dimers, then trimers, oligomers, and eventually long-chain polymers. The functional groups react in a stepwise manner, and polymerization occurs throughout the mixture. Typical examples include polyesters, polyamides, and polyurethanes.

Reaction Mechanism Example: Formation of Polyester

- 1. Reaction between a diacid and a diol:
 - $HOOC-R-COOH + HO-R'-OH \rightarrow HOOC-R-COO-R'-OH + H\blacksquare O$
- 2. Chain extension:

```
HOOC-R-COO-R'-OH + HOOC-R-COOH \rightarrow HOOC-R-COO-R'-OOC-R-COOH + H\blacksquareO
```

3. Repetition of this process forms a long polyester chain with ester linkages (-COO-).

Chain-Growth Polymerization:

In chain-growth polymerization, unsaturated monomer molecules (such as alkenes) react through a reactive intermediate (free radical, cation, or anion). The reaction occurs in three major steps: initiation, propagation, and termination.

Reaction Mechanism Example: Free Radical Polymerization of Ethylene

1. Initiation:

Peroxide (RO–OR) decomposes to generate free radicals: RO–OR \to 2RO• Radical attacks ethylene: RO• + CH \blacksquare =CH \blacksquare \to RO–CH \blacksquare -CH \blacksquare •

2. Propagation:

- 3. Termination:
- a) Combination: Two chains combine: -CH■-CH■- + •CH■-CH■- →
- -CH■-CH■-CH■-CH■-
- b) Disproportionation: Hydrogen abstraction stops growth.

Example Polymers: Polyethylene, polystyrene, polyacrylates.

Ionic Polymerization:

This type involves ionic intermediates (cations or anions).

• Cationic polymerization: Initiated by strong acids. Example: Polymerization of isobutene

using H■SO■.

$$\mathsf{CH} \blacksquare = \mathsf{C}(\mathsf{CH} \blacksquare) \blacksquare + \mathsf{H} \blacksquare \to \mathsf{C} \blacksquare \mathsf{H} - \mathsf{C}(\mathsf{CH} \blacksquare) \blacksquare$$

Propagation occurs via carbocation addition to further monomers.

• Anionic polymerization: Initiated by strong bases or organometallics. Example: Polymerization of styrene using butyl lithium.

$$\texttt{C}\blacksquare H\blacksquare - \texttt{C}H = \texttt{C}H \blacksquare + \texttt{B}u \blacksquare \to \texttt{C}\blacksquare H\blacksquare - \texttt{C}H \blacksquare - \texttt{B}u$$

Propagation continues via carbanion addition.

Coordination Polymerization:

This type uses transition metal catalysts (e.g., Ziegler–Natta catalyst: TiCl■ + Al(C■H■)■) for polymerization of alkenes.

Example: Polymerization of propylene to isotactic polypropylene.

- 1. Monomer coordination: Propylene coordinates to metal center.
- 2. Insertion: Alkyl group migrates to monomer double bond.
- 3. Chain growth continues in a stereoregular fashion.

Conclusion:

The mechanism of polymerization determines the structure, properties, and application of the resulting polymer. Step-growth leads to condensation polymers like polyesters and nylons, while chain-growth yields addition polymers like polyethylene and polypropylene. Mastery of these mechanisms allows chemists to design materials with tailored properties.